Поиск по сайту

active powe aggregation rules algorithm b backpropagation carbon dioxide classification classification (of information) clustering algorithms co2 emission combined cycle technology combined forecasting concept drift concept drifts decision tree decision trees design direct replacements electric power generation electric power system control electric power systems electric power transmission networks electric utilities empiri ensemble learning environmental technology expanding business extreme learning-machine forecasting fuel economy fuel saving fuels fuzzy c-means (fcm) fuzzy clustering fuzzy systems gas technologies gas turbines gas-turbine equipments greenhouse gas emissions hybrid hybrid po image analysis integrated scheme of energy supply investments learning algorithms learning systems least squares approximations linearization machine learning management neural networks neural-network optimization patents and inventions photovoltaic generation problems of maintaining power quality random forest recursive least squares method (rls) reduction co2 emissions regression signal processing smart community state estimation steam turbines support vector machine support vector machines t-s fuzzy model thermal power plant thermoelectric power plants wavelet transform wind wind effects wind energy wind power wind power forecasting wind power plant wind power: wind speed: t–s fuzzy model: forecasting wind turbines ветровая энергия выброс парниковых газов нестабилизированная электроэнергия переход к водородной эн проблемы подержания качества электроэнергии экономия топлива

   
Дополнительные параметры поиска

Результаты поиска ( Отсортировано по релевантности | Сортировать по дате )


Wind speed and power ultra short-term robust forecasting based on Takagi–Sugeno fuzzy model

Liu F., Li R., Dreglea A. Wind speed and power ultra short-term robust forecasting based on Takagi–Sugeno fuzzy model // Energies. Vol.12. No.18. ID: 3551. 2019. DOI: 10.3390/en12183551 Accurate wind power and wind speed forecasting remains a critical challenge in wind power systems management. This paper proposes an ultra short-time forecasting method based on the Takagi–Sugeno (T–S) fuzzy model for wind power and wind speed. The model does ...

Теги: linearization , machine learning , wind power: wind speed: t–s fuzzy model: forecasting , backpropagation , clustering algorithms , fuzzy clustering , learning systems , least squares approximations , neural networks , support vector machines , wind , wind power , b
Раздел: ИСЭМ СО РАН
Integrated energy supply schemes on basis of cogeneration plants and wind power plants

Postnikov I., Stennikov V., Penkovskii A. Integrated energy supply schemes on basis of cogeneration plants and wind power plants // Energy Procedia. Vol.158. 2019. P.154-159. DOI: 10.1016/j.egypro.2019.01.063 The paper presents innovative technological concepts of integrated energy supply schemes based on joint operation of thermal and wind power plants. The ...

Теги: fuel saving , integrated scheme of energy supply , reduction co2 emissions , thermal power plant , wind energy , wind power plant , carbon dioxide , fuel economy , fuels , patents and inventions , thermoelectric power plants , wind power , wind turbines , co2 emission
Раздел: ИСЭМ СО РАН
Dynamic State Estimation of Electric Power System Integrating Wind Power Generation

Glazunova A. Dynamic State Estimation of Electric Power System Integrating Wind Power Generation // E3S Web of Conferences. Vol.69. ID: 02013. 2018. DOI: 10.1051/e3sconf/20186902013 This paper is concerned with a problem of operation control of the electric power systems integrating wind farms. Dynamic state estimation is used ...

Теги: electric power generation , electric power system control , electric power systems , electric power transmission networks , electric utilities , forecasting , state estimation , wind , wind power , active powe
Раздел: ИСЭМ СО РАН
Hybrid power source based on heat and wind power plants

Stennikov V.A., Penkovsky A.V., Postnikov I.V. Hybrid power source based on heat and wind power plants // MATEC Web of Conferences. Vol.212. ID: 02002. 2018. DOI: 10.1051/matecconf/201821202002 The technology of use of electric power of the wind power plants for direct replacement of fuel in the thermal cycles of the heat power plants ...

Теги: environmental technology , gas turbines , investments , steam turbines , wind power , combined cycle technology , direct replacements , expanding business , gas technologies , gas-turbine equipments , hybrid po
Раздел: ИСЭМ СО РАН
A combined forecasting approach with model self-adjustment for renewable generations and energy loads in smart community

... Sidorov D., Panasetsky D. A combined forecasting approach with model self-adjustment for renewable generations and energy loads in smart community // Energy. Vol.129. 2017. P.216-227. DOI: 10.1016/j.energy.2017.04.032 The short-term forecasting of wind power, photovoltaic (PV) generation and loads is important for the secure and economical dispatching of smart community with smart grid. Considering the smart community has plenty of distributed generations, here, a concept of net load is defined ...

Теги: wind power , photovoltaic generation , support vector machine , combined forecasting , smart community , extreme learning-machine , wavelet transform , neural-network , optimization , hybrid , regression , algorithm , management , design
Раздел: ИСЭМ СО РАН
Short-term wind power forecasting based on T-S fuzzy model

Liu F., Li R., Li Y. et al. Short-term wind power forecasting based on T-S fuzzy model // Asia-Pacific Power and Energy Engineering Conference, APPEEC. Vol.Decem. 2016. P.414-418. ISBN 9781509054183. DOI: 10.1109/APPEEC.2016.7779537. Due to the impacts of wind speed, wind direction, temperature ...

Теги: fuzzy c-means (fcm) , recursive least squares method (rls) , t-s fuzzy model , wind power forecasting , clustering algorithms , forecasting , fuzzy systems , least squares approximations , signal processing , support vector machines , wind , wind effects , wind power
Раздел: ИСЭМ СО РАН
Random forest based approach for concept drift handling

... 978-3-319-52920-2; 978-3-319-52919-6. DOI: 10.1007/978-3-319-52920-2_7 Concept drift has potential in smart grid analysis because the socio-economic behaviour of consumers is not governed by the laws of physics. Likewise there are also applications in wind power forecasting. In this paper we present decision tree ensemble classification method based on the Random Forest algorithm for concept drift. The weighted majority voting ensemble aggregation rule is employed based on the ideas of Accuracy Weighted ...

Теги: machine learning , decision tree , concept drift , ensemble learning , classification , random forest , classification (of information) , decision trees , image analysis , learning algorithms , learning systems , wind power , aggregation rules , concept drifts , empiri
Раздел: ИСЭМ СО РАН
Нестабилизированная электроэнергия ветровых электростанций как заменитель высококачественного топлива на тепловых электростанциях

Стенников В.А., Жарков С.В. Нестабилизированная электроэнергия ветровых электростанций как заменитель высококачественного топлива на тепловых электростанциях // Тяжелое машиностроение. №10. 2014. C.32-35. Предлагается технология использования нетрадиционных и возобновляемых источников энергии (НВИЭ). Технология предполагает использование нестабилизированной электроэнергии ветроэлектростанций (ВЭС) как наиболее перспективного из НВИЭ для прямого замещения топлива в цикле ПГУ. Включение ВЭС в электрическую...

Теги: ветровая энергия , wind power , проблемы подержания качества электроэнергии , problems of maintaining power quality , нестабилизированная электроэнергия , экономия топлива , fuel saving , выброс парниковых газов , greenhouse gas emissions , переход к водородной эн
Раздел: ИСЭМ СО РАН


Телефоны

основной    +7(3952) 500-646
приемная    +7(3952) 42-47-00
факс     +7(3952) 42-67-96
Смотреть справочник