Поиск по сайту


   
Дополнительные параметры поиска

Результаты поиска ( Отсортировано по релевантности | Сортировать по дате )


Использование методов машинного обучения при оценке надёжности электроэнергетических систем методом Монте-Карло

Бояркин Д.А., Крупенев Д.С., Якубовский Д.В. Использование методов машинного обучения при оценке надёжности электроэнергетических систем методом Монте-Карло // Вестник ЮУрГУ. Серия «Математическое моделирование и программирование». Т.11. №4. 2018. C.146-153. DOI: 10/14529/mmp18041 В статье рассматривается вопрос повышения вычислительной эффективности процедуры оценки балансовой надежности электроэнергетических систем при использовании метода статистических испытаний (метод Монте-Карло). При использовании...

Теги: электроэнергетические системы , оценка надежности , метод монте-карло , машинное обучение , electric power systems , adequacy assessment , monte carlo method , machine learning
Раздел: ИСЭМ СО РАН
Machine learning in electric power systems adequacy assessment using Monte-Carlo method

... Modelling, Programming and Computer Software. Vol.11. No.4. 2018. P.146-153. DOI: 10.14529/mmp180411 The article considers the question of increasing the computational efficiency of the procedure for electric power systems adequacy assessment using the Monte Carlo method. In the framework of using this method, it is necessary to randomly generate a certain number of system states. As it is known the speed and accuracy of the calculation depends on the number of such states to be analyzed, so one of ...

Теги: adequacy assessment , electric power systems , machine learning , monte carlo method
Раздел: ИСЭМ СО РАН
Machine learning in electric power systems adequacy assessment using Monte-Carlo method

Boyarkin D.., Krupenev D.S., Iakubovskiy D.., Sidorov D.N. Machine learning in electric power systems adequacy assessment using Monte-Carlo method // Proceedings - 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017. ID: 8109871. P.201-205. ISBN (print): 9781538615966. DOI: 10.1109/SIBIRCON.2017.8109871 This paper deals with the computational efficiency related problem appearing in electric power systems adequacy assessment using Monte-Carlo method...

Теги: adequacy assessment , electric power systems , machine learning , monte carlo method , random forest , support vector machine , artificial intelligence , computational efficiency , decision trees , efficiency , learning systems , problem solving , support vector mach
Раздел: ИСЭМ СО РАН


Телефоны

основной    +7(3952) 500-646
приемная    +7(3952) 42-47-00
факс     +7(3952) 42-67-96
Смотреть справочник