Использование методов машинного обучения при оценке надёжности электроэнергетических систем методом Монте-Карло

Статья в журнале
Бояркин Д.А., Крупенев Д.С., Якубовский Д.В.
Вестник ЮУрГУ. Серия «Математическое моделирование и программирование»
Вестник ЮУрГУ. Серия «Математическое моделирование и программирование». Т.11. №4. C.146-153.
2018
В статье рассматривается вопрос повышения вычислительной эффективности процедуры оценки балансовой надежности электроэнергетических систем при использовании метода статистических испытаний (метод Монте-Карло). При использовании данного метода необходимо сгенерировать случайным образом определенное количество состояний моделируемой системы. Известно, что при этом скорость и точность выполнения расчета зависит от числа таких случайных состояний, подлежащих анализу, поэтому одним из способов решения поставленной задачи является сокращение их числа при соблюдении требуемой точности оценки. Для этого предлагается использовать методы машинного обучения, задача которых заключается в классификации расчетных состояний электроэнергетической системы. При проведении эксперимента были применены метод опорных векторов и метод случайного леса. Результаты расчетов показали, что использование данных методов позволило сократить число анализируемых случайных состояний системы, тем самым сокращая общее время на проведение расчетов в целом и доказывая эффективность предлагаемого подхода. При этом наилучшие результаты были получены при применении метода случайного леса.

Библиографическая ссылка

Бояркин Д.А., Крупенев Д.С., Якубовский Д.В. Использование методов машинного обучения при оценке надёжности электроэнергетических систем методом Монте-Карло // Вестник ЮУрГУ. Серия «Математическое моделирование и программирование». Т.11. №4. 2018. C.146-153. DOI: 10/14529/mmp18041
WOS
SCOPUS
Список ВАК
x
x