Поиск по сайту

abstract only active powe artificial intelligence automotive fuels autonomous energy systems available transfer capability chronological method. clustering algorithms comparative effectiveness competitiveness computer simulation computer software decision making decision supports deep learning deep learning. demand distributed generation dynamic state estimation eastern regions economic and social effects economic development economic variables economics economy elasticity electric automobiles electric car electric cars electric lines electric power generation electric power system control electric power systems electric power transmission networks electric power utilization electric utilities electricity intensities electricity-consumption energy conservation energy consumption energy demand energy demands energy development program energy infrastructure development forecasting energy infrastructures energy intensity energy management energy resources energy sector energy storage energy utilization estimation program expert decision support expert knowledge forecast forecasting forecasting modeling forecasting models forecasting problems freight transportation fuel and energy sector fuzzy c-means (fcm) fuzzy systems gru households hybrid approach integral equations intelligent computing intelligent info intersystem inverse problem isolated hybrid power systems knowledge management learning algorithms least squares approximations long-term forecasting long-term tre longterm trends lstm machine learning macro-region manufacture measurements model modeling models motor fuel neural netwo neural networks numerical methods on-line controls ontology operation constraint optimal resu per capita per capita energy consumption perspective pollution power plants power systems power systems mathematical modeling and control prices real time recursive least squares method (rls) regional markets regions of russia renewable energy sources retrospective analysis risks road transport roads and streets service industri service industry signal processing solar radiation state estimation state estimators state variables support vector machines svm t-s fuzzy model total transfer c transport uncertainty wind wind effects wind energy potential wind power wind power forecasting wind ramp prediction инвестиционные риски моделирование неопределенность прогнозирование риски сравнительная эффективность экономика электростанции энергетика

   
Дополнительные параметры поиска

Результаты поиска ( Отсортировано по релевантности | Сортировать по дате )


Recurrent Neural Networks Application to Forecasting with Two Cases: Load and Pollution

Tao Q., Liu F., Sidorov D. Recurrent Neural Networks Application to Forecasting with Two Cases: Load and Pollution // Advances in Intelligent Systems and Computing. Vol.1072. 2020. P.369-378. ISBN (print): 9783030335847. DOI: 10.1007/978-3-030-33585-4_37 Forecasting problems exist widely in our life. Its purpose is to ...

Теги: deep learning , forecasting , gru , lstm , decision making , intelligent computing , learning algorithms , machine learning , pollution , forecasting modeling , forecasting models , forecasting problems , neural netwo
Раздел: ИСЭМ СО РАН
Energy balancing using charge/discharge storages control and load forecasts in a renewable-energy-based grids

... order to solve these problems the Volterra integral dynamical models are employed. Such models allow to determine the alternating power function for given/forecasted load and generation datasets. In order to efficiently solve this problem, the load forecasting models were proposed using deep learning and support vector regression models. Forecasting models use various features including average daily temperature, load values with time shift and moving averages. Effectiveness of the proposed energy ...

Теги: deep learning. , energy storage , forecasting , integral equations , inverse problem , machine learning , numerical methods , power systems , svm
Раздел: ИСЭМ СО РАН
Russian-Chinese Workshop "Mathematical Modeling of Renewable and Isolated Hybrid Power Systems"

... Muftahov, Prof. Denis Sidorov ESI RAS Integral models for load leveling Ms. Ranran Li, Mr. Aleksei Zhukov, Dr. Fang Liu, Prof. Denis Sidorov, Central South University, Hunan University, ESI RAS T-S Fuzzy Model and PDSRF Model for Wind Speed Short-Term Forecasting Dr. Daniil Panasetsky, Mr. Alexey Osak, ESI RAS Smart Grid projects in Irkutsk Grid Company Dr. Konstantin Suslov, Irkutsk National Research Technical University Expansion Planning of Active Power Supply Systems Prof. Valery Zorkaltsev,...

Теги: power systems mathematical modeling and control , forecasting , isolated hybrid power systems , wind ramp prediction , machine learning
Раздел: ИСЭМ СО РАН
Energy Consumption in the Transport Sector: Trends and Forecast Estimates

... qualitative transformations in the energy sector according to new environmental requirements. The forecast estimates of possible consequences of the adoption of electric vehicles in Russia are given. This paper proposes a methodological approach to forecasting of energy consumption in the transport sector. A general scheme of interrelations between models designed to make forecast of energy demand at the country level is presented with the integration of dynamic macroeconomic model and the simulation ...

Теги: electric car , energy consumption , energy intensity , forecast , longterm trends , motor fuel , perspective , road transport , transport , automotive fuels , electric automobiles , forecasting , freight transportation , roads and streets , electric cars , long-term tre
Раздел: ИСЭМ СО РАН
Distinctive Features of Energy Demand Forecasting in the Non-Manufacturing Sector of the Economy

Gal'Perova E., Mazurova O. Distinctive Features of Energy Demand Forecasting in the Non-Manufacturing Sector of the Economy // 2018 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2018. ID: 8602537. 2019. ISBN (print): 9781538695357. DOI: 10.1109/FarEastCon.2018.8602537 ...

Теги: energy demand , households , long-term forecasting , modeling , per capita energy consumption , service industry , economic and social effects , energy management , energy utilization , forecasting , manufacture , models , energy demands , per capita , service industri
Раздел: ИСЭМ СО РАН
Dynamic State Estimation of Electric Power System Integrating Wind Power Generation

Glazunova A. Dynamic State Estimation of Electric Power System Integrating Wind Power Generation // E3S Web of Conferences. Vol.69. ID: 02013. 2018. DOI: 10.1051/e3sconf/20186902013 This paper is concerned with a problem of operation control of the electric power systems integrating wind farms. Dynamic state estimation is used to obtain reliable information about state variables and to promptly forecast the upcoming operating conditions. To predict the state variables, we assume that the wind farms...

Теги: electric power generation , electric power system control , electric power systems , electric power transmission networks , electric utilities , forecasting , state estimation , wind , wind power , active powe
Раздел: ИСЭМ СО РАН
Влияние горизонта прогнозирования и роста неопределенности на способы оценки конкурентоспособности новых электростанций

Кононов Ю.Д., Кононов Д.Ю. Влияние горизонта прогнозирования и роста неопределенности на способы оценки конкурентоспособности новых электростанций // Известия РАН. Энергетика. №4. 2018. C.21-30. DOI: 10.31857/S000233100002361-1 Рассматриваются проблемы комплексной оценки сравнительной эффективности разных электростанций в условиях неопределенности и усложнения взаимосвязей энергетики и экономики. Анализируются зарубежные данные об изменении технико-экономических показателей новых электростанций...

Теги: power plants , comparative effectiveness , forecasting , uncertainty , электростанции , сравнительная эффективность , прогнозирование , неопределенность , инвестиционные риски
Раздел: ИСЭМ СО РАН
An analysis of dynamics of a change in the electricity intensity of the economy of the country and eastern regions and the forecasting of electricity consumption in the long term

Korneev A. An analysis of dynamics of a change in the electricity intensity of the economy of the country and eastern regions and the forecasting of electricity consumption in the long term // E3S Web of Conferences. Vol.58. ID: 01013. 2018. DOI: 10.1051/e3sconf/20185801013 The paper presents a retrospective analysis of the trends towards changes in the electricity in-tensity of the ...

Теги: economics , forecasting , eastern regions , economic development , electricity intensities , electricity-consumption , retrospective analysis , electric power utilization
Раздел: ИСЭМ СО РАН
Ontology-based decision support system for forecasting of energy infrastructure development

Kopaygorodsky A. Ontology-based decision support system for forecasting of energy infrastructure development // RPC 2018 - Proceedings of the 3rd Russian-Pacific Conference on Computer Technology and Applications. ID: 8482172. 2018. ISBN (print): 9781538675311. DOI: 10.1109/RPC.2018.8482172 This article reports ...

Теги: energy infrastructure development forecasting , expert decision support , knowledge management , ontology , artificial intelligence , computer software , forecasting , decision supports , energy infrastructures , expert knowledge , hybrid approach , intelligent info
Раздел: ИСЭМ СО РАН
METHODOLOGICAL ASPECTS OF THE MATHEMATICAL MODELLING OF LONG-TERM ENERGY DEVELOPMENT PROGRAMMES.

Melentyev L.A., Makarov A.A., Gershenzon M.A., Makarova A.S., Papin A.A. METHODOLOGICAL ASPECTS OF THE MATHEMATICAL MODELLING OF LONG-TERM ENERGY DEVELOPMENT PROGRAMMES. // Proc. of the Energy Modelling Studies and Conservation, Proceedings of a Seminar of the United Nations Economic Commission for Europe. 1982. ISBN (print): 0080274161. [No abstract available] нет

Теги: abstract only , computer simulation , economic variables , energy conservation , energy development program , forecasting , energy utilization
Раздел: ИСЭМ СО РАН


Телефоны

основной    +7(3952) 500-646
приемная    +7(3952) 42-47-00
факс     +7(3952) 42-67-96
Смотреть справочник