Поиск по сайту


   
Дополнительные параметры поиска

Результаты поиска ( Отсортировано по релевантности | Сортировать по дате )


Chebyshev, octahedral and eucledean projection of a point onto polyhedron

... 2017. ISBN (print): 9 781 509 062 607. DOI: 10.1109/CNSA.2017.7974039 The problem of search of closest point of polyhedron to origin is considered under different definitions of concept 'closeness'. Polyhedron is defined as set of solutions of system of linear inequalities. Properties and relations of Euclidean, Chebyshev, octahedral, Holder projections of origin onto polyhedron are researched. © 2017 IEEE. нет

Теги: chebyshev , euclidean , system of linear inequalities , geometry
Раздел: ИСЭМ СО РАН


Телефоны

основной    +7(3952) 500-646
приемная    +7(3952) 42-47-00
факс     +7(3952) 42-67-96
Смотреть справочник