Поиск по сайту


   
Дополнительные параметры поиска

Результаты поиска ( Отсортировано по релевантности | Сортировать по дате )


Prediction of the power shortage in the electric power system by means of regression analysis by machine learning methods

Boyarkin D.A., Krupenev D.S., Iakubobsky D.V. Prediction of the power shortage in the electric power system by means of regression analysis by machine learning methods // E3S Web of Conferences. Т.114. ID: 03003. 2019. DOI: 10.1051/e3sconf/201911403003 Modern electricity consumers place increasingly high demands on the level of reliability of power supply and, correspondingly, the reliability of electric power systems (EPS). These requirements should be directly addressed in the EPS development...

Теги: decision trees , electric power systems , machine learning , number theory , random number generation , regression analysis , software reliability , support vector machines , electric power systems (eps) , mac
Раздел: ИСЭМ СО РАН
Lyapunov-based small signal analysis for power systems of Russia

Yadykin I.B., Voropai N.I., Efimov D.N. Lyapunov-based small signal analysis for power systems of Russia // Proc. of the 7th IFAC Conference on Manufacturing Modelling, Management, and Control. Санкт-Петербург Russia. 19-21 June 2013. P.251-256. ISBN (print): 9783902823. DOI: 10.3182/20130619-3-RU-3018.00267 A new mathematical general approach has been suggested to carry out small signals analysis of power systems by computing gramians spectral expansion in time and frequency domains. The gramians...

Теги: faddeev , gramians , ill-stable oscillations , lyapunov equation , power system stability , small-signal analysis , stability boundaries , time and frequency domains , lyapunov functions , number theory , stand
Раздел: ИСЭМ СО РАН


Телефоны

основной    +7(3952) 500-646
приемная    +7(3952) 42-47-00
факс     +7(3952) 42-67-96
Смотреть справочник