Center for Energy Systems

Skolkovo Instititute of Science of Technology

Professor Janusz Bialek

Director of Skoltech Center for Energy Systems

Skolkovo Institute of Science and Technology

 In collaboration with Massachusetts institute of Technology

Skolkovo Institute of Science and Technology

New private, graduate university based on MIT model Key concept: combined Research, Education and Innovation 15 multidisciplinary Centers for Research, Education and Innovation (CREI) Energy, BioMed, IT, Space, Nuclear, World-class research leading to applications International collaboration

Power System in 20th Century

19th Century science + 20th Century technology

kolkovo Institute of Science and Technology

Power system in the 20th Century

- Feat of engineering: very reliable
- Centralised control of a limited number of large controllable power stations
- Predictable and passive demand
- Design and operation
 - Deterministic (N-1)
 - Designed to serve peak load – low asset utilisation (55% Gen., 30% Transm.)
 - Passive distribution: "install and forget"

Drivers for change in 21st Century

- Climate change
- Growth of distributed (renewable and fossil-fuel), uncontrollable and stochastic power generation
- Active and stochastic distribution level (prosumers):
 - Demand participation
 - PV
 - Electric vehicles

Change of paradigm

- 20th Century: centralised control by System Operator of a limited number of controllable power stations to meet a deterministic demand
- 21st Century: distributed control of a very large number of uncontrollable and stochastic power sources to meet a stochastic demand
- How to accommodate the changes?

Power System in 21st Century

19th Century science + 20th Century technology + 21st Century ICT

New control tools and methodologies needed

General aim: create a cyber-physical power system able to deal with the challenges.

kolt

Whole-system, interdisciplinary approach needed

- Mathematics, computer science
 - Distributed, stochastic control
- Physics
 - Large-scale dynamic object
- Economics
 - Markets, regulation
- Social science
 - Understanding the customers
- Politics
 - Approval of the electorate
- Engineering
 - Understanding the physical power system

Key drivers and challenges in Russia

- ➔ Technical challenges:
 - → Spatial extent: 9 time zones.
 - → Strong coupling, due to the climate and district heating, between interdependent infrastructures (power, gas, heat) poorly optimized.
 - → Semi-autonomous systems in Arctic and Far East.
- ➔ Growth and maturing of renewables.
- Russian power industry has great traditions but has not kept up with modern developments.
 - → Aging Infrastructure.

Skoltech

Institute of Science and Technol

- Poor efficiency and threatened reliability.
- → Generational/technological change.
- → Rapid market reforms creating inefficiencies.

Skoltech Center for Energy Systems

Main partners:

- IES RAS (Irkutsk), Novosibirsk and others
- MIT, Caltech, US National Labs, Michigan, Comillas (Spain), Newcastle (UK)

Main industrial partners: Rosseti, Federal Grid Company, System Operator, En+ et al.

Four main thrusts

- 1. Smart and Resilient Grids
- 2. Energy Markets and Regulation
- 3. Coupled Energy Infrastructures
- 4. Power Electronics and Devices

Skoltech

Thrust #1: Energy Markets and Regulation

- Aim: Improve efficiency of the markets.
- Grand challenges for Russia:
 - Incentivize modernization of the power generation fleet (capacity market)
 - Develop integrated pricing mechanism of electricity and heat.
 - Promote energy conservation and sustainability
 - Develop effective Demand Side Response

Thrust #2: Smart and Resilient Grids

- Aim: Improve operation, control and planning of the power system.
- Grand Challenges for Russia:
 - Develop distributed power system control and management systems: smart active-adaptive grid
 - Improve emergency control systems.
 - Microgrids: develop multi-domain modelling, simulation and control algorithms
 - Integration of renewable energy sources

Thrust #3: Coupled Energy Infrastructures

- **Aim:** Improve joint efficiency and reliability of interdependent energy infrastructures (power, gas & heat).
- Grand Challenges for Russia:
 - Optimize operation, network reinforcement and expansion of coupled infrastructures
 - Develop interconnection projects
 - Far East Asia energy ring
 - Global Grid.

Thrust #4: Power Electronics and Devices

 Aim: Improve efficiency, reliability and resilience of power generation, conversion and supply.

- Grand Challenges for Russia:

- Ultra-efficient power electronics conversion
- Non-intrusive power use monitoring
- Cyber-security: architecture and circuits for secure computation on grid data.
- Generation: improved systems for waste heat recovery, associated gas utilization, flue gas cleaning and energy recuperation.

Opportunities

- Vacancies at all levels: PhD, postdoc, faculty
- Engage in world-class research relevant to Russia
- Excellent funding and benefits
- Opportunity to spend a significant amount of time working with foreign partners: MIT, Caltech, Michigan, US Federal Labs, Comillas, Newcastle

