SOLUTION OF LINEAR AND NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND WITH PIECEWISE SMOOTH KERNELS

Denis Sidorov

Energy Systems Institute SB RAS Irkutsk State University e-mail: dsidorov@isem.sei.irk.ru

Volterra integral equations of the first kind $\int_{0}^{t} K(t,s)x(s)ds = f(t), f(0) = 0, 0 \le s \le t \le T$, with piecewise smooth kernels

 $K(t,s) := \begin{cases} K_1(t,s), \ t,s \in m_1, \\ \dots \\ K_n(t,s), \ t,s \in m_n, \end{cases} \qquad m_i := \{t,s \mid \alpha_{i-1}(t) < s < \alpha_i(t)\}, \\ \alpha_0(t) = 0, \ \alpha_n(t) = t, \ i = \overline{1,n} \end{cases}$

are considered. Here $\alpha_i(t)$, $f(t) \in C^1_{[0,T]}$, $K_i(t,s)$ have continuous derivatives (w.r.t. t) for $t, s \in \overline{m_i}$, $K_n(t,t) \neq 0$, $\alpha_i(0) = 0$, $0 < \alpha_1(t) < \alpha_2(t) < \cdots < \alpha_{n-1}(t) < t$, $\alpha_1(t), \ldots, \alpha_{n-1}(t)$ increase at least in the small neighborhood $0 \leq t \leq \tau$, $0 < \alpha'_1(0) \leq \cdots \leq \alpha'_{n-1}(0) < 1$. The following results will be reported for this equation: condition for the existence of a unique solution; conditions for the existence of parametric solutions. Based on these results the approximate methods (successive approximations and asymptotic methods) are constructed. Taking into account obtained conditions for the existence of a unique solution, the numerical methods are proposed in [4,5] and their first order convergence is observed. The theoretical results [1-3] are generalized on the cases of matrix kernels in [6] and operator coefficients $K_i(t,s)$ in [7]. The proposed theory can be employed for solutions of the problems in power systems development modeling, including optimal equipment replacement [5,8]. New results concering the generalizations on nonlinear case and piecewise smooth source function will be also reported.

REFERENCES

1. D. Sidorov. Volterra Equations of the First kind with Discontinuous Kernels in the Theory of Evolving Systems Control. – Stud. Inform. Univ. 9(3), 2011, pp. 135–146.

2. D. N. Sidorov. Methods of Analysis of Integral Dynamical Systems: Theory and Applications.
— Irkutsk: ISU Publ, 2013, 293 p. (in Russian language).

3. D. Sidorov. Integral Dynamical Models: Singularities, Signals and Control. World Scientific Series on Nonlinear Science (Series A), Vol. 89. Edt: Leon O. Chua. — Singapore: World Scientific Publ. Pte Ltd. 2014, 245 p. (in press).

4. D. Sidorov, A. Tynda and I. Muftahov. Numerical Solution of Weakly Regular Volterra Integral Equations of the First Kind. — arXiv:1403.3764v2, 8 p.

5. E. V. Markova, D. N. Sidorov. On one Integral Volterra Model of Developing Dynamical Systems. – Automation and Remote Control. 2014, 75 (3), pp. 413–421. 6. D. N. Sidorov. Solvability of Systems of Integral Volterra Equations of the First Kind with Piecewise Continuous Kernels. – Russian Math., 2013, no. 1, pp. 62–72.

7. N. A. Sidorov, D. N. Sidorov. On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels. – Math. Notes. 2014 (in press).

8. A.S. Apartsin, I.V. Sidler Using the Nonclassical Volterra Equations of the First Kind to Model the Developing Systems. – Automation and Remote Control. 2013, 74 (6), pp. 899–910.