RESTORING THE PARAMETERS OF CONJUGATED PAIRS OF LINEAR ALGEBRAIC EQUATION SYSTEMS BY A SET SOLUTION ${ }^{1}$

A.S. Krasnikov

Russian State Social University, Moscow
e-mail: askrasnikov@gmail.com
The report observes the theorem of recovering the parameters of a conjugated pair of linear algebraic equation systems by a set solution using an interval criterion.

Theorem. The $A \in \mathbf{R}^{m \times n}$ family of matrices and the $b \in \mathbf{R}^{m}, c \in \mathbf{R}^{n}$, families of vectors that guarantee that the set $\bar{x} \in \mathbf{R}^{n}$ and $\bar{u} \in \mathbf{R}^{m}$ vectors belong to the

$$
\left\{\begin{array}{l}
A x=b, \\
u^{\top} A=c^{\top},
\end{array}\right.
$$

set of solutions of a conjugated pair of systems of linear algebraic equations, and at the same time, $\|A\| \leq \alpha,\|b\| \leq \beta,\|c\| \leq \gamma$, where $\alpha>0, \beta>0, \gamma>0$ can be constructed using

$$
b=\lambda \frac{\bar{u}}{\bar{u}^{\top} \bar{u}}+\lambda\left(I_{m}-\frac{\bar{u} \bar{u}^{\top}}{\bar{u}^{\top} \bar{u}}\right) \Delta b, c=\lambda \frac{\bar{x}}{\bar{x}^{\top} \bar{x}}+\lambda\left(I_{n}-\frac{\bar{x} \bar{x}^{\top}}{\bar{x}^{\top} \bar{x}}\right) \Delta c, A=\frac{1}{\lambda} b c^{\top},
$$

formulas, where $\|\cdot\|$ stands for, depending on the content, the Euclidean matrix or vector norm, the scalar parameter λ is calculated using the

$$
\lambda \leq \bar{\lambda}=\min \left(\frac{\alpha}{\bar{\alpha}}, \frac{\beta}{\bar{\beta}}, \frac{\gamma}{\bar{\gamma}}\right),
$$

rule,

$$
\bar{\beta}=\sqrt{\frac{1}{\bar{u}^{\top} \bar{u}}+\Delta b^{\top}\left(I_{m}-\frac{\bar{u} \bar{u}^{\top}}{\bar{u}^{\top} \bar{u}}\right) \Delta b}, \quad \bar{\gamma}=\sqrt{\frac{1}{\bar{x}^{\top} \bar{x}}+\Delta c^{\top}\left(I_{n}-\frac{\bar{x} \bar{x}^{\top}}{\bar{x}^{\top} \bar{x}}\right) \Delta c}, \quad \bar{\alpha}=\bar{\beta} \cdot \bar{\gamma},
$$

$\Delta b \in \mathbf{R}^{m}, \Delta c \in \mathbf{R}^{n}$ are random vectors, I_{m}, I_{n} are singular matrices of size m and n, accordingly.

At the same time $\|A\|=\lambda \cdot \bar{\alpha},\|b\|=\lambda \cdot \bar{\beta},\|c\|=\lambda \cdot \bar{\gamma}$.
The report ends with a numerical experiment with a model example.

[^0]
[^0]: ${ }^{1}$ The project was completed with support from The Russian Foundation for Basic Research (project № 14-01-31318)

