# NUMERICAL METHOD FOR SOLVING AN INVERSE BOUNDARY VALUE PROBLEM OF HEAT CONDUCTION USING THE VOLTERRA EQUATIONS OF THE FIRST KIND ${ }^{1}$ 

S.V. Solodusha

Melentiev Energy Systems Institute SB RAS, Irkutsk
e-mail: solodusha@isem.sei.irk.ru

In the report I consider Volterra equation of the first kind

$$
\begin{equation*}
\int_{0}^{t} K_{N}(t-s) \phi(s) d s=g_{\delta}(t), 0 \leq s \leq t \leq T \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{N}(t-s)=2 \pi^{2} \sum_{p=1}^{N}(-1)^{p+1} p^{2} e^{-\pi^{2} p^{2}(t-s)}, \tag{2}
\end{equation*}
$$

which is reduced the solution of an inverse boundary value problem of heat conduction [1]. The right side of (1) is an approximation of function $g(t)$ for $\delta>0$, so that $\forall t \geq 0$ we have $\left\|g_{\delta}(t)-g(t)\right\| \leq \delta$.

To illustrate the specifics of Volterra integral equation of the first kind (1), (2) I present the numerical characteristics of the Volterra kernels $K_{N} \in C_{\Delta}, \Delta=\{t, s / 0 \leq s \leq t \leq T\}$ for fixed values $N$. The table contains the values $K_{N}$ for $t=0$, and the roots $t^{*}$ of equations $K_{N}(t)=0$, $N=\overline{10,21}$, obtained with single precision.

| $N$ | $t^{*}$ | $K_{N}(0)$ | $N$ | $t^{*}$ | $K_{N}(0)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 0.01378 | -1085.656 | 16 | 0.00913 | -2684.532 |
| 11 | 0.01221 | 1302.788 | 17 | 0.00631 | 3020.099 |
| 12 | 0.01173 | -1539.658 | 18 | 0.00809 | -3375.405 |
| 13 | 0.01022 | 1796.268 | 19 | 0.00516 | 3750.449 |
| 14 | 0.01019 | -2072.62 | 20 | 0.00735 | -4145.234 |
| 15 | 0.00789 | 2368.705 | 21 | 0.00429 | 4559.757 |

I constructed an algorithms for the numerical solution of Volterra equation of the first kind (1), (2) based on the self-regularizing property of discretization procedure. Middle rectangles method and product integration method used as a "base". I found the parameters that define the discretization step. I performed a series of test calculations to test the effectiveness of the numerical method. Computing experiment showed that the difference methods converge on the grid step with the order $\mathcal{O}\left(h^{2}\right)$ in the absence of perturbations of the initial data.

## REFERENCES

1. Yaparova N.M. Numerical Methods for Solving a Boundary Value Inverse Heat Conduction Problem// Inverse Problems in Science and Engineering, 2013, http://www.tandfonline.com/doi/abs/10.1080/17415977.2013.830614
[^0]
[^0]:    ${ }^{1}$ The work was supported by RFBR (grant N 12-01-00722-a).

