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The work is devoted to creation of software for the solution of linear stochastic problem of
the type:
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There are implemented two approaches for resolve problem (1).
The first approach – move to deterministic task.
It is known [1], if the elements of the matrix A and components of the vector b are mutually

independent normally distributed random variable aij ∈ N(aij, σ
2
ij), bi ∈ N(bi, θ

2
i ) and the

condition αi ≥ 0.5, i = 1, ...,m , then the problem (1) is reduced to deterministic problem of
convex programming in the following form:
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aijxj ≤ bi, i = 1, ...,m, (2)

xj ≥ 0, j = 1, ..., n.

For the solution of problem (2), provided that x ∈ X, where X – convex set, in the software
package implements a method possible directions. In addition, there was conducted study based
on statistical methods and simulation [2], the result of which are the conditions, in witch possible
to use problem (2) to find the solution of problem (1) if the elements of the matrix A and vector
b are mutually independent uniformly distributed random variable aij ∈ R( aij, aij), bi ∈
R(bi, bi).

The second approach – a direct method for solving stochastic problems.
In developed software implemented design method of stochastic quasigradient [3] for solving

problem (1), provided that x ∈ X, where X – convex set.
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