WEIGHTED MATRIX STRUCTURAL ADJUSTMENT IMPROPER LINEAR PROGRAMMING PROBLEMS OF THE 1ST KIND

V.I. Erohin, M.N. Hvostov

St. Petersburg State Technological Institute (Technical University), St. Petersburg, Borisoglebsk State Pedagogical Institute, Borisoglebsk
e-mail: erohin_v_i@mail.ru, hvostoff@inbox.ru

The report, in the continuation of research initiated in [1], the problem of P matrix correction of improper linear programming (LP) of the 1st kind of the minimum weighted Euclidean norm in the case where the elements of the augmented matrix $[A-b]$ coefficients of its limitations divided into a plurality of adjustable $\left[K^{+} k^{+}\right.$] and uncorrectable [$K^{-} k^{-}$] elements.

Theorem. If the problem P has a solution, then the desired vectors and matrices can be constructed by direct formulas that depend on the solutions (soluble under these conditions) unconstrained minimization problem.

$$
\Phi(\tilde{x})=\sum_{i=1}^{m} \frac{(b-A(\operatorname{diag}(\tilde{x}) \tilde{x}))_{i}^{2} \cdot\left|s\left(\left[\begin{array}{c}
\operatorname{diag}(\tilde{x}) \tilde{x} \\
1
\end{array}\right],\left[\begin{array}{c}
\mathcal{H}_{i *}^{\top} \\
\chi_{i}
\end{array}\right]\right) \cdot \operatorname{diag}\left(\left[\begin{array}{c}
\mathcal{W}_{i *}^{\top} \\
\omega_{i}
\end{array}\right]\right)\right|^{2}}{\left(s^{\top}\left(\left[\begin{array}{c}
\operatorname{diag}(\tilde{x}) \tilde{x} \\
1
\end{array}\right],\left[\begin{array}{c}
\mathcal{H}_{i *}^{\top} \\
\chi_{i}
\end{array}\right]\right) \cdot s\left(\left[\begin{array}{c}
\operatorname{diag}(\tilde{x}) \tilde{x} \\
1
\end{array}\right],\left[\begin{array}{c}
\mathcal{H}_{i *}^{\top} \\
\chi_{i}
\end{array}\right]\right)\right)^{2}} \rightarrow \min
$$

where the coefficients $\left[\begin{array}{c}\mathcal{W}_{i *}^{\top} \\ \omega_{i}\end{array}\right]$ determine the weight of each i-th row correction matrix $[H-h]$ in the objective function, $\mathcal{H}_{i *}-i$-th row of the matrix \mathcal{H}, $s(p, q)=\left(s(p, q)_{i}\right)\left|\begin{array}{ll}s(p, q)_{i}=p_{i}, & \text { if } q_{i} \neq 0 \\ s(p, q)_{i}=0, & \text { if } q_{i}=0\end{array}, \quad \mathcal{H}=\left(\mathcal{H}_{i j}\right)\right| \begin{aligned} & \mathcal{H}_{i, j}=1, \text { if }\{i, j\} \in \mathbf{K}^{+}, \\ & \mathcal{H}_{i, j}=0,\end{aligned}$ if $\{i, j\} \in \mathbf{K}^{-}, ~$ $\chi=\left(\chi_{i}\right) \left\lvert\, \begin{aligned} & \chi_{i}=1, \text { if }\{i\} \in \mathbf{k}^{+} \\ & \chi_{i}=0, \text { if }\{i\} \in \mathbf{k}^{-} .\end{aligned}\right.$

Analytical formulas for the gradient of this function are given [2]. Computational procedure of minimization with the use of an algorithm Broyden-Fletcher-Goldfarb-Shanno is implemented. Results of model problems of middle dimension with sparse matrix coefficients from the catalog "lp/infeas"storage Netlib, illustrating the convergence of the argument and the objective function and the distribution of elements on the amendments are given.

REFERENCES

1. Erohin V.I, Krasnikov A.S, Hvostov M.N. On sufficient conditions for the solvability of linear programming problems with matrix correction of their constraints // Proc. Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences. 2013. Volume 19. Number 2. pp. 145-156 (In Russian).
2. Erohin V.I, Krasnikov A.S, Hvostov M.N. Quasi-Newton algorithms for matrix correction improper linear programming problems with an arbitrary set of adjustable coefficients // Bulletin of St PbSIT(TU). 2014. Number 23. pp. 87-92 (In Russian).
[^0]
[^0]: ${ }^{1}$ Supported by an RFBR (Project N 14-01-31318)

