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Abstract—In the paper discusses the properties of the 

critical variables, for which the probability to fall within the 

specified interval is less than the required one. To increase the 

probability that the variable lies in the feasible region a control 

vector with the minimum number of components is chosen from 

a set of possible controls, using the method of contribution factor 

The presented numerical results on the example of test and real 

networks demonstrate the efficiency of the proposed approaches 

to the electric power system operation control. 

Keywords—Critical variables, probabilistic load flow, 

contribution factors, controls.  

I.  INTRODUCTION 

A large response of variables to a disturbance is significant 

in the case if it changes some criterion of power system 

operation, for example the criterion of operation feasibility. 

To increase the probability that the variable lies in the 

feasible region it is necessary either to reinforce the network, 

which will improve the Jacobian matrix conditioning, reduce 

the response of the variables to the disturbance and expand the 

feasible region, or to find the appropriate controls to make the 

variable mean value shift inside the feasible region. 

The required probability is provided by iteratively and 

consecutively solving the problem of probabilistic load flow 

[1] and the problem of determining feasible operating 

conditions by the deterministic equivalent method, which 

implies searching for a feasible solution with a shift of the 

critical variable mean value inside the feasible region.  

The critical variables are the variables for which the 

probability to fall within the specified interval is less than the 

required one. If the solution exists, a control vector with the 

minimum number of components is chosen from a set of 

possible controls, using the method of contribution factor [2], 

and the required increment in the control vector is determined, 

which increases the probability that the critical variable lies in 

the feasible region.  

The study to be mentioned among the first to consider 

constraints in the calculation of probabilistic load flows is [3]. 

The need to solve the indicated problem by the procedure for 

calculating constrained optimal power flow has resulted in the 

development of the methods that combine deterministic and 

probabilistic approaches. The theoretical foundations of this 

approach called the method of deterministic equivalent are 

presented in [4]. 

II. STOCHACTIC CONTROL PROBLEM 

A strong response of the sensor variable [5], [6] to the 

disturbance is not dangerous in itself if the variable remains 

within feasible limits after the disturbance. Therefore, the 

most important indicator is the required value of probability 

that the random value lies in the specified feasible range. 

In the case that the calculation of probabilistic load flow 

results in critical variables for which the probability to fall 

within the specified interval is less than the required one, the 

probability can be increased either by decreasing the mean 

square deviation of the variable or by shifting its mean value 

inside the feasible region. 

The mean square deviation of the critical variable being 

also a sensor variable, can be decreased for example by the 

reinforcement of weak ties [5], [6]. Another possibility is to 

choose the control actions that decrease the distance between 

the mean value and median of the distribution density curve 

on the feasible interval.  

Such a criterion is used in the case where variable has the 

law of distribution other than the normal law, and the 

approximated probability density curve can be obtained by 

three or a greater number of moments, using the Gram- 

Charlie expansion [7]. 

The probability density curve when approximated on the 

basis of two moments is symmetrical. This makes it possible 

to transform the criterion for the selection of controls into the 

minimization of distance between the mean value of the 

variable and the center of a feasible interval of its change 

towards the point of the required probability value. When the 

constraints on the variable are specified symmetrically with 

respect to its nominal value the center of the interval is the 

nominal value of the variable. 

In order to choose the controls to provide the required 

probability for the critical variables to lie within the feasible 

limits, the method similar to the method of deterministic 

equivalent [3] is used. In this method successively 

deterministic and probabilistic problems are solved. Solving 

the deterministic problem suggests shifting the mean value to 

the center of the feasible interval but not narrowing this 
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interval for each critical variable as it is done in the method of 

deterministic equivalent. 

The variable mean value to be obtained as a result of 

control can be determined by using the inverse error function. 

This function allows one to determine the interval   of 

change in the normally distributed random variable, which 

makes it possible at a specified value of mean square deviation 

to provide the required probability that this variable falls 

within this interval. 

The interval i  is compared to the known feasible 

interval )zz(. iminimaxfi  50  of the critical variable iz  

change. If   0 ifi , then for  iimaxz z
i

  the 

shift of the mean 
iz  of variable iz  will equal 

0
iziimaxzi z , and for  iiminzi z   the 

shift will be 0
iziiminzi z . For   0 ifi  

a conclusion about the impossibility of providing the required 

probability that the variable lies within the feasible interval 

and the need to shift the mean value of the variable to the 

center of the feasible interval is made. In this situation the 

required shift of the mean 
iz  will be equal 

to
izfiiminzi z  . 

An algorithm for increasing the probability that the 

variables fall within the feasible limits is iterative, its each  

k  - th iteration contains the following main steps. 

1. The deterministic problem is solved to obtain feasible 

operating conditions of electric power systems subject to  

   0ZW  (1) 

 maxmin ZZZ   (2) 

where (1) – system of equations of nodal power balances, (2)– 

constraints on the variables Z , that include magnitudes and 

phases of nodal voltages, active and reactive power flows and 

independent variables or controls Y , such as active and 

reactive power of generation and transformation ratios of tap-

changing transformers. 

Problems (1) and (2) are solved by combining the reduced 

gradient and quadratic programming methods [3], and if there 

exists a feasible solution for 
kZ  and hence for kY  then the 

algorithm goes to step 2. Otherwise, the algorithm stops. 

2. The probabilistic load flow is calculated, the numerical 

characteristics of variables and probability of meeting the 

constraints (2) are determined. If for all the variables the 

required value of probability is provided, the algorithm stops. 

Otherwise, the number vN  of critical variables 
k
jz  is 

determined for which the required probability value is not 

provided and an estimate of the shift 
k
z j

  of its mean which 

leads to an increase in the probability is calculated. If in the 

adjacent iterations for each critical variable k
jz  the condition 

  k
z

k
z jj

1  is met, where   – a set small number, the 

required probability values cannot be reached and the 

algorithm stops. Otherwise, the algorithm goes to step 3. 

3. The deterministic optimization problem is solved to 

determine the vector of control kk YYY  , that provides 

the minimum of the criterion   

     



v

j

N

j

k
z

k
jj zYzmin

1

2
, (3) 

when the constraints (2) are met. If a solution to the problem is 

found and criterion (3) equals zero, the algorithm goes to step 

4, otherwise, 
 YY k 1  , 1 kk , and it goes to step 2. 

4. The minimum number of controls kY  is chosen on the 

basis of the contribution factors method [2]. The information 

about tracing the flows is used to determine the so called 

significant controls that affect the critical variable to the 

greatest extent. This algorithm allows us to determine the 

paths connecting the critical variable with generator nodes 

when moving from the node with the critical variable along 

the electrical network graph in the direction opposite to the 

orientation of power flows in branches.  

The larger the power gnP  transferred from generator node 

g  to node n  with a critical variable, the greater the impact on 

the critical variable is produced by the controls (generator 

power and transformer ratios) included in the path. The power 

gnP  (active or reactive) transmitted from generator node g  to 

load node n  in the graph tracing algorithm [2] is determined 

as  

 
 


l

1j

m

1i

inggnggn

j

PPPaPP , (4) 

where gna  – share of generator node power gP  transmitted to 

load node, nP  – relative load at node n , which is determined 

as a ratio of load power at node to the sum of powers 

incoming to the node, l  – number of paths, connecting the 

nodes g  and n , jm  – number of branches entering the j  - th 

path, and iP  – a relative flow at the beginning of branch i , 

equal to the ratio of power flow in branch iP  to the total 

power incoming to its initial node.  

The significant controls underlie the formation of variants 

with different number of controls kY , for each of which the 

solution to problem (1)–(3) is searched for. When comparing 

the variants, the variants with the minimum number of 

controls are chosen. If there are several variants with equal 



number of controls, then the variant with the minimum active 

power losses is taken. Then the vector kkk YYY 1 , 

1 kk  is determined, and the algorithm goes to step 2. 

III. PRACTICAL EXAMPLES 

The electric power system presented in Figure 1, which 

consists of 14 nodes and 15 ties, is used as a test scheme. The 

performance of the considered methods for this scheme is 

illustrated by an example of the nodal voltage magnitude 

control.  

 

Figure 1  Scheme of a 14-node test network 

The initial data on mean values and variances for the loads 

specified at all the nodes were obtained with the use of the 

Laplace function. Mean square deviations of nodal powers 

were assumed to be equal to 12 % of their mean values, which 

corresponds to 20 % of the load forecast error for a 0.9 

probability of random value deviation from the mean.  

Figure 2 presents the graphs of the mean square deviations 

of nodal voltage magnitudes obtained by the linear method 

and the Monte Carlo method [1]. The graphs show that node 8 

is the sensor node. 
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Figure 2 Mean square deviation of voltage magnitudes at the nodes of the 

test scheme obtained by the linear method – 1, the Monte Carlo method – 2  

The conclusion that node 8 is the node with a sensor 

voltage magnitude can also be made on the basis of the 

singular analysis technology [5]. For this purpose the nodes 

can be projected on the plane in coordinates of the first and 

second singular vectors. The sensor nodes in such a graph will 

have maximum distance from the origin of coordinates. After 

interconnecting the nodes by the ties, the network graph 

projection in coordinates of the first and second right singular 

vectors is obtained, Figure 3.  
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Figure 3. Projection of the network graph in coordinates of the first (v1) and 

second (v2) right singular vectors that correspond to voltage magnitudes  

However, such a technology, unlike the probabilistic load 

flow, does not allow simultaneous identification of sensor 

variables and assessment of their possible variation ranges and 

probabilities that the variables lie within the feasible limits.  

Table I contains the mean values U  and mean square 

deviations U  of voltage magnitudes obtained by the linear 

method of probabilistic load flow, differences between the 

mean values and nominal voltages, and the probabilities p  

that voltage magnitudes fall within the feasible intervals. The 

feasible intervals for 500 kV voltages are taken equal to 

±30 kV, and for 220 kV – ±25 kV. 

TABLE I.  PROBABILISTIC CHARACTERICTICS OF VOLTAGE 

MAGNITUDES AT THE TEST NETWORK NODES FOR THE INITIAL STATE 

Nodes U (kV) U  (kV) nomU U  (kV) p  

2 522.34 3.65 22.34 0.98 

4 231.49 1.32 11.49 1.00 

5 512.05 6.88 12.05 0.99 

6 225.17 1.86 5.17 1.00 

8 508.44 17.12 8.44 0.88 

100 229.24 2.03 9.24 1.00 

200 528.15 4.83 28.15 0.64 

202 233.62 2.05 13.62 1.00 

a.  

If the required value of probability that voltage magnitudes 

lie within the given intervals should be not less than 0.95, the 

voltage magnitudes at nodes 200 and 8 can be defined as 

critical. 

Another estimate of critical voltage magnitudes iU  can 

be represented by the maximum ratio of mean square 

deviation 
iU  to the feasible variable variation range 

determined by the proximity of the variable mean to its upper 

iU  or lower 
i

U  limiting value 

 
 

iUUiUU U,Umin
iiii

  , (5) 



Such a possibility is illustrated in Figure 4 which shows 

the values of components of vector U  and the values of 

probabilities that voltage magnitudes lie within the feasible 

limits. Under the initial operating conditions critical node 200 

corresponds to the maximum value of 
iU  and minimum 

probability. At the nodes with the 0.98–1.0 probability that 

voltage magnitudes are within the feasible limits, the values of 

iU  do not exceed 0.5. 
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Figure 4.  Values of 
iU  – 1, 2 and probability 

i
p  that voltage 

magnitudes are within the feasible limits – 3, 4, for the initial operating 
conditions 1, 3 and the conditions obtained as a result of the network 

reinforcement and selection of control actions 2, 4 

To provide the required probability, that voltage 

magnitudes at nodes 8 and 200 fall within the feasible limits, 

the two methods including the reinforcement of weak ties and 

selection of control actions to move the mean values of 

variables to the center of the feasible interval were compared.  

Weak ties are the ties, in which the reduction in resistances 

increases the minimum singular value of the Jacobian matrix, 

i.e. improves its conditionality and decreases the response of 

sensor variables to disturbances [5]. 

For the criterion used to detect weak ties the maximum 

values of the mean square deviations of changes in the voltage 

magnitude differences (Figure 5) obtained by the linear 

method, and the Monte Carlo method are applied [8]. 

According to these values, ties 5–8 and 8–200 in the test 

network (Figure 1) are weak. The projection of the network 

graph (Figure 3) shows that the weak ties are the longest. 

At the initial point the mean square deviation of the 

voltage magnitude at node 8 amounts to 
8U 17.12 kV. This 

means that with the probability of 0.95 the voltage will be in 

the interval  33.54 kV. Since the feasible interval of 

voltage changes equal to  f 30 kV, then 

    0543543330  ..ifi  and the mean should 

be moved to the center of the feasible interval, hence the mean 

of the critical variable will be 
8U 500 kV. This will make 

it possible to provide the 0.9203 probability that the voltage 

falls in the feasible interval.  

To provide the 0.99 probability that the voltage of node 

200 with mean square deviation equal to  200U 4.83 kV lies 

in the feasible interval, the value of the mean should equal 

235187711530
200

..z iimaxU   kV and the shift of 

the mean will be 9291552823518
200

...
U

  kV.  
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Figure 5. Mean square deviations of voltage magnitude differences in the 

ties of the scheme obtained by the linear method – 1, the Monte Carlo method 

– 2 

Since the critical variables are represented by voltages, 

their values are changed by the reactive power sources and 

transformers.  

The test scheme has 11 controls with 6 reactive power 

sources at nodes 1, 3, 7, 101, 201, 203 and 5 tap-changing 

transformers in ties 2–4, 5–6, 200–201, 200–202, and 202–

203. 

The contribution factors method [2] was used to determine 

the controls that make the required shifts of voltage values at 

nodes 8 and 200 in the test scheme by investigating the 

reactive power flows coming to the specified nodes, Figure  6. 

 
Figure 6.  Directions of reactive power flows arriving at nodes 8 and 200 

with critical voltage magnitudes  

The analysis of the flow directions makes it possible to 

find the significant controls that include four sources of 

reactive power at nodes 1, 3, 201 and 203 and four tap-

changing transformers 2–4, 200–201, 200–202 and 202–203. 

The determined controls are the basis for the calculation of 

vector kY  with the minimum number of controls that 

include the reactive power of node 203 and the transformation 

ratios of transformers 200–201, 200–202 and 2–4. 

Figure 7 presents probability that the voltages of nodes 8 

and 200 lie in the feasible interval for initial operating 

condition, after the implementation of determined controls and 

under simultaneous implementation of the chosen controls and 

reinforcement of weak ties. 

The implementation of control actions related to the 

change in the source reactive power at node 201 and to the 

regulation of transformation ratios of transformers, and the 



obtained shift in the mean values of voltage magnitudes at 

nodes 8 and 200 make it possible to increase the probability 

that they lie within the feasible limits.  
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Figure  7. Probability of changes in voltage magnitudes at nodes 8 and 200 

for the initial operating conditions (1), operating conditions after the 

reinforcement of weak ties (2), operating conditions after the implementation 
of control actions (3), and operating conditions under simultaneous 

implementation of control actions and reinforcement of weak ties (4) 

Owing to the reduction in the mean square deviation and 

the shift in the mean, simultaneous implementation of control 

actions and a two-fold increase in the conductivities of weak 

ties increased the probability that the voltage magnitude at 

node 8 falls within the feasible limits. Graphs 2 and 4 in 

Figure 4, which correspond to the values of index 
iU  and 

the probability that voltage magnitudes are within the feasible 

limits, show that in this case both indices attest to the absence 

of critical voltage magnitudes. 

 

Figure 8. Projection of the real network graph on the plan in coordinates of 

the first (v1) and second (v2) right singular vectors that correspond to voltage 

magnitudes  

Let us illustrate the operation of the algorithms with an 

example of the real electric network consisting of 207 nodes 

and 224 ties. The projection of the nodes and ties of this 

network on the plane in coordinates of the first and second 

singular vectors corresponding to nodal voltage magnitudes is 

presented in Figure 8. Voltage magnitudes at nodes 77, 78, 12, 

and 17 (110 kV) are sensor variables. The feasible interval for 

110 kV voltages is taken equal to ±10 kV.  

Table II shows that the same order of the nodes with 

sensor voltage magnitudes is obtained by the linear method of 

probabilistic load flow for the initial and end states. In the 

initial state the critical variable is only the voltage magnitude 

at node 12, whose probability of lying within the feasible 

limits is close to zero. After the shift of the mean, the end state 

with the 0.95 probability for the critical value is determined. 

Such a result is obtained using only one control action found 

by the contribution factors method. The full control vector 

includes 93 components. 

TABLE II.  PROBABILISTIC CHARACTERICTICS OF VOLTAGE 

MAGNITUDES AT THE SENSOR NODES OF REAL NETWORK FOR THE INITIAL (1) 

AND END (2) STATES 

Nodes U (kV) nomU Um   (kV) p  

1 2 1 2 1 2 

78 1.267 1.264 –5,69 –5,56 0,999 0,999 

77 1,189 1,186 –4,24 –4,12 1 1 

12 0,923 0,877 –11,96 –8,55 0,017 0,951 

17 0,621 0,594 –7,21 –4,71 1 1 

157 0,601 0,573 –7,41 –4,25 1 1 

IV. CONCLUSIONS 

1. An approach is suggested to search for a solution to the 

control problem with minimum number of controls on the 

basis of the data on tracing the power flows. 

2. The expressions for the required shift of the mean values 

of critical variables to the center of the feasible interval were 

obtained.  

3. The criterion for determining the critical variables, 

which does not require the calculation of the probability, that 

variable lies in the feasible interval, was proposed. 

4. A test and real networks are used as an example to show 

the efficiency of the proposed approach to reducing the 

number of controls in order to ensure the required probability 

of meeting the probabilistic constraints in the case of 

simultaneous application of the deterministic equivalent and 

the tracing methods.  

The proposed approaches are supposed to be further 

developed in the studies on the applicability of point methods 

[9] to calculation of probabilistic characteristics of state 

variables, design of algorithms for the system security 

assessment on the basis of the generalized disturbance method 

[1], and improvement in the methods for solving optimization 

problems with minimum number of controls for different 

criteria and calculation cases. 
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