Decomposition Approach to Nonconvex Quadratic Programming*

Oleg Khamisov and Ilya Minarchenko
Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Science, Irkutsk, Russia khamisov@isem.irk.ru, eq.progr@gmail.com

Consider a quadratic programming problem with nonconvex objective function and linear constraints, and reduce it by means of linear transformation to the form

$$
\left.\begin{array}{l}
\sum_{i=1}^{p} \lambda_{i} x_{i}^{2}+\sum_{i=1}^{q} \mu_{i} y_{i}^{2}+x^{\boldsymbol{\top}} l_{x}+y^{\boldsymbol{\top}} l_{y} \rightarrow \min _{(x, y)} \tag{1}\\
A x+B y \leqslant d, \quad \underline{x} \leqslant x \leqslant \bar{x}, \quad \underline{y} \leqslant y \leqslant \bar{y},
\end{array}\right\}
$$

where $(\lambda, \mu)=\left(\lambda_{1}, \ldots, \lambda_{p}, \mu_{1}, \ldots, \mu_{q}\right)$ stand for eigenvalues of a matrix in the objective function, besides $\lambda<0, \mu \geqslant 0$. For fixed x, consider the subproblem

$$
\begin{equation*}
\sum_{i=1}^{q} \mu_{i} y_{i}^{2}+y^{\top} l_{y} \rightarrow \min _{y}, \quad A x+B y \leqslant d, \quad \underline{y} \leqslant y \leqslant \bar{y} \tag{2}
\end{equation*}
$$

that is, obviously, convex. Let $\varphi(x)$ be the optimal value function of (2). It is easy to determine that $\varphi(x)$ is convex function of x. Thus the problem (1) can be represented as

$$
\begin{equation*}
\sum_{i=1}^{p} \lambda_{i} x_{i}^{2}+\varphi(x)+x^{\boldsymbol{\top}} l_{x} \rightarrow \min _{x}, \quad \underline{x} \leqslant x \leqslant \bar{x} \tag{3}
\end{equation*}
$$

Constructing iterative process in x, procedures for solving (3) can be obtained. For example, d.c. structure of the problem may be used. Decomposition described above is more effective when the dimension of y is significantly larger than the one of x, since the subproblem (2) causes no difficulties for present-day solvers.

[^0]
[^0]: * This work was supported by the Russian Foundation for Basic Research, project No. 15-07-08986.

