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Consider a quadratic programming problem with nonconvex objective func-
tion and linear constraints, and reduce it by means of linear transformation to
the form
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where (λ, µ) = (λ1, . . . , λp, µ1, . . . , µq) stand for eigenvalues of a matrix in the
objective function, besides λ < 0, µ > 0. For fixed x, consider the subproblem
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that is, obviously, convex. Let ϕ(x) be the optimal value function of (2). It is
easy to determine that ϕ(x) is convex function of x. Thus the problem (1) can
be represented as
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x
, x 6 x 6 x . (3)

Constructing iterative process in x, procedures for solving (3) can be obtained.
For example, d.c. structure of the problem may be used. Decomposition described
above is more effective when the dimension of y is significantly larger than the
one of x, since the subproblem (2) causes no difficulties for present-day solvers.
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