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Abstract. We propose a variant of the cutting-plane method [1] with
approximating an epigraph of the objective function which is character-
ized by possibility of updating embedding sets due to dropping cutting
planes. Updates occur on the basis of the constructed criterion of ap-
proximation quality for the epigraph by polyhedron sets. Convergence of
the method is proved and discuss its implementations.

A problem is solved for minimizing convex function f(x) on the convex closed
set D ⊂ Rn. Suppose that x∗ is a solution, f∗ = f(x∗), epi f(x) = {(x, γ) ∈
Rn+1 : x ∈ Rn, f(x) ≤ γ}, K = {0, 1, . . .}.

The method is proposed as follows. Choose a point v ∈ int epif(x), convex
closed sets M0 ⊆ Rn+1, G0 ⊂ Rn such that epif(x) ⊂ M0, x∗ ∈ G0. Select
numbers γ̄, λk, τk, k ∈ K according to conditions γ̄ ≤ f∗, λk ∈ (0, 1), τk ≥ 0,
λk → 0, k →∞, τk → 0, k →∞. Assign D0 = D

⋂
G0, i = 0, k = 0.

1. Find a solution ui = (yi, γi), where yi ∈ Rn, γi ∈ R1, of the problem
min{γ : x ∈ Di, (x, γ) ∈ Mi, γ ≥ γ̄}. A point ūi /∈ int epif(x) is selected in the
interval (v, ui] such that ui + qi(ūi−ui) ∈ epif(x) for some 1 ≤ qi ≤ q < +∞. If
ūi = ui, then yi is a solution of the initial problem. Otherwise, choose a bounded
set Ai of generally supported vectors for the set epif(x) at the point ūi.

2. If ‖ūi−ui‖ > λk‖v−ui‖, then assign Mi+1 = Mi

⋂
{u ∈ Rn+1 : 〈a, u−ūi〉 ≤

0 ∀a ∈ Ai} and go to Step 4. Otherwise, go to Step 3.
3. Choose a point xk ∈ Di such that f(xk) ≤ f(yi) + τk, assign δk = γi,

Mi+1 = Mri

⋂
{u ∈ Rn+1 : 〈a, u− ūi〉 ≤ 0 ∀a ∈ Ai}, where 0 ≤ ri ≤ i, k := k+1.

4. Choose a convex closed set Gi+1 ⊂ G0 according to condition x∗ ∈ Gi+1,
assign Di+1 = D

⋂
Gi+1, increment i by one, and go to Step 1.

Optimal criterion from Step 1 is proved. It is obtained that sequences {xk},
{δk} will be constructed together with the sequence {ui}.
Theorem 1. For constructed sequences {xk}, {δk} it is obtained that lim

k→∞
f(xk) =

lim
k→∞

δk = f∗.
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