Weak Invariance for Impulsive Differential Inclusions

Olga Samsonyuk

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of the Russian Academy of Sciences, 134, Lermontov st., Irkutsk, 664033, Russia

A measure-driven differential inclusion generated by an impulsive control system with trajectories of bounded variation is considered. The solutions of the differential inclusion are upper semicontinuous set-valued functions with selections of bounded variation [2–4]. The property of weak invariance of closed sets relative to the differential inclusion is investigated. The weak invariance property deals with conditions under which there exists a set-valued solution starting and remaining in a given closed set C. Definitions and characterizations for weak invariance and preinvariance are presented and discussed. These results are related to the proximal theory [1, 5] and have a form of systems of proximal Hamilton-Jacobi inequalities.

The research is partially supported by the Russian Foundation for Basic Research project 17-01-00733 and Comprehensive Program of Basic Research of SB RAS "Integration and Development" project 2017-II.2P/I.1-2.

References

- Clarke, F., Ledyaev, Yu., Stern, R., Wolenski, P.: Nonsmooth analysis and control theory. In: Graduate Texts in Mathematics, vol. 178. Springer-Verlag, New York (1998)
- 2. Miller, B.M., Rubinovich, E.Ya. Impulsive controls in continuous and discretecontinuous systems. Kluwer Academic Publishers, New York (2003)
- Pereira, F.L., Silva, G.N., Oliveira, V.: Invariance for impulsive control systems. Autom. Remote Control, 69, 788–800 (2008)
- Samsonyuk, O.N.: Invariant sets for the nonlinear impulsive control systems. Autom. Remote Control, 76, 405–418 (2015)
- 5. Vinter, R.B.: Optimal control. Birkhauser, Boston (2000)