Cutting plane method using penalty functions

I. Ya. Zabotin and K. E. Kazaeva

Kazan (Volga Region) Federal University, e-mail: iyazabotin@mail.ru, k.e.kazaeva@gmail.com

We propose a method of solving a convex programming problem. It is based on the ideas of cutting methods (e.g., [1]) and penalty methods (e.g., [2]). The method uses the polyhedral approximation of the feasible set and the auxiliary functions epigraphs that are constructed on the basis of external penalties.

We solve the problem $\min \{f(x): x \in D\}$, where $f(x)$ - a convex function in R_{n} and $D \subset R_{n}$ - convex bounded closed set.

Let $f^{*}=\min \{f(x): x \in D\}, X^{*}=\left\{x \in D: f(x)=f^{*}\right\}$, epi $(g, G)=$ $\left\{(x, \gamma) \in R_{n+1}: x \in G, \gamma \geqslant g(x)\right\}$, where $G \subset R_{n}, g(x)$ - the function defined in $R_{n}, W(z, Q)$ - the bunch of normalized generally support vectors for the set Q at the point $z, \operatorname{int} Q-$ interior of the set $Q, K=\{0,1, \ldots\}$.

We set $F_{i}(x)=f(x)+P_{i}(x), i \in K$, where $P_{i}(x)$ - a penalty function that satisfies the conditions:

$$
\begin{equation*}
P_{i}(x)=0 \forall x \in D, P_{i+1}(x) \geqslant P_{i}(x), \lim _{i \in K} P_{i}(x)=+\infty \text { for all } x \notin D \text {. } \tag{1}
\end{equation*}
$$

The proposed method generates a sequence of approximations $\left\{x_{k}\right\}$ as follows. Fix a number $\Delta_{0}>0$, a point $v=\left(v^{\prime}, \gamma^{\prime}\right)$, where $v^{\prime} \in \operatorname{int} D, \gamma^{\prime}>f\left(v^{\prime}\right)$ and define a convex penalty function $P_{0}(x)$ with the condition (1). Construct convex closed sets $M_{0} \subset R_{n+1}$ and $D_{0} \subset R_{n}$ such that epi $\left(F_{0}, R_{n}\right) \subset M_{0}, D \subset D_{0}$. Set $\bar{\gamma} \leqslant f_{0}^{*}$, where $f_{0}^{*}=\min \left\{f(x): x \in D_{0}\right\}$. Fix $i=0, k=0$.

1. Find $u_{i}=\left(y_{i}, \gamma_{i}\right)$, where $y_{i} \in R_{n}, \gamma_{i} \in R_{l}$, as a solution of the problem $\min \left\{\gamma: x \in D_{i},(x, \gamma) \in M_{i}, \gamma \geqslant \bar{\gamma}\right\}$.
If $u_{i} \in \operatorname{epi}(f, D)$, then $y_{i} \in X^{*}$.
2. In some way choose a point $v_{i} \notin \operatorname{int} \operatorname{epi}\left(F_{i}, R_{n}\right)$ in the interval $\left(v, u_{i}\right)$. Let $M_{i+1}=M_{i} \cap\left\{u \in R_{n+1}:\left\langle a_{i}, u-v_{i}\right\rangle \leqslant 0\right\}$, where $a_{i} \in W\left(v_{i}\right.$, epi $\left.\left(F_{i}, R_{n}\right)\right)$.
3. Let $D_{i+1}=D_{i} \cap\left\{x \in R_{n}:\left\langle b_{i}, x-v_{i}^{\prime}\right\rangle \leqslant 0\right\}$, where $b_{i} \in W\left(v_{i}^{\prime}, D\right)$, $v_{i}^{\prime}=\left(v^{\prime}, y_{i}\right) \backslash \operatorname{int} D$, Or $D_{i+1}=D_{i}$.
4. If $F_{i}\left(y_{i}\right)-\gamma_{i}>\Delta_{k}$, than set $P_{i+1}(x)=P_{i}(x)$ and go step 5. Otherwise choose convex penalty function $P_{i+1}(x)$ satisfying the given conditions (1) and set $x_{k}=y_{i}, \sigma_{k}=\gamma_{i}$. Choose $\Delta_{k+1}>0$ and go to step 5 with the value of k increased by one.
5. Increase the value of i by one and go to step 1 .

Lets note that it is possible to set $\Delta_{k}=\Delta>0$, for all $k \in K$, and, in particular, suppose that Δ is arbitrarily large or set $\Delta_{k} \rightarrow 0, k \rightarrow \infty, k \in K$.

It is proved that for every limit point $(\bar{x}, \bar{\sigma})$ of the sequence $\left\{\left(x_{k}, \sigma_{k}\right)\right\}$ the following equalities hold:

$$
\bar{x} \in X^{*}, \quad \bar{\sigma} \in f^{*} .
$$

References

1. Bulatov, V. P.: Embedding methods in optimization problems (in Russian), p. 161. Nauka, Novosibirsk (1977)
2. Vasilev, F. P.: Optimization methods (in Russian), p. 620. MCCME, Moscow (2011)
