On the abnormality in open shop scheduling

Ilya Chernykh^{1,2} and Sergey Sevastyanov^{1,2}

¹ Sobolev Institute of Mathematics, Novosibirsk, Russia, ² Novosibirsk State University, Novosibirsk, Russia, idchern@math.nsc.ru, seva@math.nsc.ru

We consider the classic open shop scheduling problem to minimize the makespan [1]. An input I of the problem can be described by an matrix of processing time $P = (p_{ji})_{m \times n}$, m and n being the numbers of machines and jobs respectively. The standard lower bound for instance I is defined as $\bar{C}(I) \doteq \max \left\{ \max_{i} \sum_{j} p_{ji}, \max_{j} \sum_{i} p_{ji} \right\}$. Let us denote the total load of instance I by $\Delta(I) \doteq \sum_{i,j} p_{ji}$. Note that by definition $\Delta(I) \leq m\bar{C}(I)$.

A feasible schedule S for instance I is referred to as *normal* if its makespan $C_{\max}(S)$ coincides with $\overline{C}(I)$ [2]. An instance I is *normal* if a normal schedule for I exists. It is well known that any two-machine open shop instance is normal [1] while for $m \ge 3$ that is not the case.

For any instance I we define its *abnormality* as $\alpha(I) \doteq C^*_{\max}(I)/\bar{C}(I)$, where $C^*_{\max}(I)$ is the makespan of optimal schedule for I. The natural question is, how large can an abnormality of some instance be.

It was shown in [3] that the maximal abnormality for any three-machine open shop instance if equal to $\frac{4}{3}$. That value is achieved on the instance I' with the following matrix of processing times $\begin{pmatrix} 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$. Note that the total load of I'reaches an extremal value of $3\bar{C}(I')$.

In this paper we discuss the maximal abnormality for the three-machine open shop as a function of the total load (specifying our previous result from [3]). More precisely, let $\mathcal{I}_m(x) \doteq \{I \text{ is an instance of } m\text{-machine open shop} | \Delta(I) \leqslant x\bar{C}(I) \}$. Then we consider the following abnormality function $F_m(x) \doteq \sup_{I \in \mathcal{I}_m(x)} \alpha(I)$.

We show that $\forall m \leq 2 \ \forall x \in [1,2] \ F_m(x) = 1$ and $\forall x \geq 2 \ F_m(x) \leq x/2$, and describe "almost exact" form of function $F_3(x)$.

References

- Gonzalez, T., Sahni, S.: Open shop scheduling to minimize finish time. J. Assoc. Comput. Mach. 23, 665–679 (1976)
- A. Kononov, S. Sevastianov, and I. Tchernykh: When difference in machine loads leads to efficient scheduling in open shops. Annals of Oper. Res., Vol. 92, 211-239 (1999).
- Sevastyanov, S. V., Tchernykh, I. D.: Computer-aided way to prove theorems in scheduling. In: Algorithms - ESA'98 Lecture Notes in Computer Science (1461) 502–513 (1998)