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We consider a problem of terminal control with phase constraints and the
boundary value problem

x∗1, x(t), u∗(t)) ∈ Argmin{〈ϕ1(x1)〉 | G1x1 ≤ g1, x1 ∈ X1 ⊆ Rn, (1)

d

dt
x(t) = D(t)x(t) +B(t)u(t), t0 ≤ t ≤ t1, (2)

x(t0) = x0 ∈ Rn, x∗(t1) = x∗1 ∈ X1 ⊂ Rn, (3)

G(t)x(t) ≤ g(t), x(·) ∈ ACn[t0, t1], u(t) ∈ U},
u(·) ∈ U = {u(·) ∈ Lr

2[t0, t1]| ‖u(·)‖L2 ≤ const}. (4)

Here D(t), B(t) – n × n, n × r are matrix functions, continuously depending
on time, G1 –m × n, (m ≤ n) is a fixed matrix, g1, x0 are given vectors. The
controls u(·) are elements of the space Lr

2[t0, t1]. U is a convex closed set. We
introduce the linearized Lagrange function. Using the Lagrange function, we can
formulate sufficient saddle-saddle conditions for the extremum for the problem
of terminal control with phase constraints and the boundary value problem in
the form convex programming.

d

dt
x∗(t) = D(t)x∗(t) +B(t)u∗(t), x∗(t0) = x0, (1)

p∗1 = π+(p∗1 + α(G1x
∗
1 − g1)), (2)

η∗(t) = π+(η∗(t) + α(G(t)x∗(t)− g(t))), (3)

d

dt
ψ∗(t) +DT(t)ψ∗(t) +GT(t)η∗(t) = 0, ψ∗

1 = ∇ϕ1(x∗1) +GT
1 p

∗
1, (4)

u∗(t) = πU (u∗(t)− αBT(t)ψ∗(t)), (5)

where π+(·), π+(·), πU (·) – projetion operators, respectively, onto the positive
orthant Rm

+ , onto the positive orthant Ψn
+[t0, t1], α > 0, and onto the set of

controls U.
Using sufficient conditions, iterative saddle-point methods can be formulated.

These methods converge in all components of the solution, namely: convergence
in controls is weak, convergence in phase and conjugate trajectories is strong (in
the norm of space). Convergence in terminal variables is also strong.
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