Minimizing a sensitivity function as boundary-value problem of terminal control

Elena Khoroshilova

Lomonosov Moscow State University, CMC Faculty, Moscow 119991, RUSSIA

Abstract. We consider a finite-dimensional optimization problem of minimizing a sensitivity function under constraints as a boundary-value problem in terminal control problem. A saddle-point method for solving problem is proposed. The method's convergence to solution of the problem in all the variables is proved.

Let us consider a problem of minimizing a sensitivity function on set Y of admissible values of y:

$$\varphi(y) = f(x^*) = \operatorname{Min}\{f(x) \mid g(x) \le y, \ x \in X \subset \mathbb{R}^n\},\tag{1}$$

$$y^* \in \operatorname{Argmin}\{\varphi(y) \mid y \in Y \subset \mathbb{R}^m_+\},\tag{2}$$

where f(x) is a scalar convex function; $Y = \{y \ge 0 \mid G(y) \le d, d \in \mathbb{R}^m_+\}$; g(x), G(y) are vector functions with convex components; d is a fixed vector; X, Y are convex closed sets. Solutions to (1) and (2) form convex closed sets X^*, Y^* with $x^* \in X^*, y^* \in Y^*$. Problem (1),(2) plays a role of a boundary-value problem in a dynamic problem of terminal control.

To solve (1),(2) we use a saddle-point approach based on reducing the problem to finding a saddle point of Lagrange function $L(x, y^*, p) = f(x) + \langle p, g(x) - y^* \rangle$. Dual extraproximal iterative method has been used to implement this approach:

$$\bar{p}^k = \pi_+(p^k + \alpha(g(x^k) - y^k)),$$
(3)

$$y^{k+1} = \pi_Y(y^k + \alpha \bar{p}^k), \tag{4}$$

$$x^{k+1} = \operatorname{argmin}\left\{\frac{1}{2}|x - x^k|^2 + \alpha(f(x) + \langle \bar{p}^k, g(x) - y^k \rangle) \mid x \in X\right\}, \quad (5)$$

$$p^{k+1} = \pi_+(p^k + \alpha(g(x^{k+1}) - y^{k+1})).$$
(6)

Theorem 1 (On convergence of method). If solution to (1), (2) exists then sequence (p^k, x^k, y^k) of dual extraproximal method (3)-(6) with parameter α satisfying the condition $0 < \alpha < \min\{1/(2|g|), 1/2\}$ converges monotonically in norm to one of solutions of the problem (p^*, x^*, y^*) as $k \to \infty$ for all (p^0, x^0, y^0) .

References

 Antipin, A.S.: Sensibility function as convolution of system of optimization problems. Optimization and Optimal Control. Chinchuluun A., Pardalos P.M., Enkhbat R., Tseveendorj I. (Eds.). Springer, 1–22 (2010)