On the skeleton of the pyramidal tours polytope^{*}

Vladimir A. Bondarenko, Andrei V. Nikolaev

Department of Discrete Analysis, P.G. Demidov Yaroslavl State University bond@bond.edu.yar.ru, andrei.v.nikolaev@gmail.com

The skeleton of the polytope P is the graph whose vertex set is the vertex set of P and edge set is the set of 1-faces of P. There are two results on the traveling salesman polytope TSP(n) of interest to us: the question whether two vertices of the TSP(n) are nonadjacent is NP-complete [4], and the clique number of the TSP(n) skeleton is superpolynomial in dimension [1]. It is known that this value characterizes the time complexity in a broad class of algorithms based on linear comparisons [2].

Hamiltonian tour is called a pyramidal if the salesman starts in city 1, then visits some cities in increasing order, reaches city n and returns to city 1 visiting the remaining cities in decreasing order. Pyramidal tours have two nice properties. First, a minimum cost pyramidal tour can be determined in $O(n^2)$ time by dynamic programming. Second, there exist certain combinatorial structures of distance matrices that guarantee the existence of a shortest tour that is pyramidal [3].

We consider the skeleton of the pyramidal tours polytope PYR(n) that is defined as the convex hull of characteristic vectors of all pyramidal tours in the complete graph K_n . We describe necessary and sufficient condition for the adjacency of the PYR(n) polytope vertices. Based on that, we establish following properties of the PYR(n) skeleton.

Theorem 1. The question whether two vertices of the PYR(n) are adjacent can be verified in linear time O(n).

Theorem 2. The clique number of the PYR(n) skeleton is $\Theta(n^2)$.

Thus, the clique number correlates with the time complexity $O(n^2)$ of dynamic programming for pyramidal traveling salesman problem.

References

- 1. V. A. Bondarenko, Nonpolynomial lower bounds for the complexity of the traveling salesman problem in a class of algorithms, *Autom. Remote Control*, **44**(9), 1137–1142, 1983.
- 2. V. A. Bondarenko and A. N. Maksimenko, Geometric constructions and complexity in combinatorial optimization, LKI, Moscow, 2008 [Russian].
- R. E. Burkard, V. G. Deineko, R. Van Dal, J. A. A. Van der Veen, and G. J. Woeginger, Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey, SIAM Rev., 40(3), 496–546, 1998.
- C. H. Papadimitriou, The adjacency relation on the traveling salesman polytope is NP-Complete, *Math. Program.*, 14(1), 312–324, 1978.

 $^{^{\}star}$ The research is supported by the initiative R&D VIP-004 YSU