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A common feature shared by most implementations of mixed integer linear
programming (milp) problems is the NP class membership, large dimensions,
and complexity of constraint structures. The focus of this paper is on a method
of solving milp problems, which is based on binary cuts (BCs) [1]. One of its al-
gorithms, a hybrid algorithm based on binary cuts and branches (binary cut-and
branch algorithm (BCBA)), which combines the idea of the branch-and-bound
method with the construction of cutting planes, is extended to milp problems.
The results of this extension are discussed. The following problem is considered:
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which is a milp problem with Boolean variables and continuous variables. Sup-
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Another important feature of BCs is their radicality measure r, which is

defined as the number of unit hypercube vertices cut off by the BC, assuming that

the cut is valid. For
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Practical applications identified several classes of milp-reducible problems
differing in the efficiency of the two measures in the BCBA. In problems al-

lowing the construction of valid BCs, the use of the measure cs(
_

α
j
) allows the



synthesis of valid cuts for on average 75percen of the algorithm steps, and the
BCBA shows in experiments a speed that is statistically close to that of the
polynomial algorithm [1]. However, there are classes of problems for which there
are no valid BCs. Examples include makespan scheduling problems for parallel
machines with delays in job entering and related problems [2]. In these cases,
the radicality measure r proved to be much more efficient, leading, in some
cases, to an increase in the speed of the BCBA computations by many orders
of magnitude. The computational experiments also revealed the potential of us-
ing different BC construction strategies. The algorithm allows the use of a large
menu of strategies with BCs that are best tailored to the structure of constraints
(2).
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