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Consider the problem of extremal mapping: to find a fixed point v∗ ∈ W , satisfying extreme
inclusion

v∗ ∈ Argmin{Φ(v∗, w) + ϕ(w)| w ∈ W ⊂ Rn}. (1)

Here (v, w) ∈ W×W ⊂ Rn×Rn,W is convex closed bounded set. The function Φ(v, w)+ϕ(w) is
convex with respect to w for any v ∈ W . In regular case the extremal mapping (1) always has a
fixed point. This statement includes many well-known finite-dimensional (static) problems, such
as the convex or equilibrium programming problems, saddle-point problems, n-person games
with the Nash equilibrium, multicriteria equilibrium problems, saddle-point games, economic
equilibrium models, variational inequalities.

These problems are interpreted as mathematical models for objects from various areas of
science and practice. It is assumed that the objects are immersed in the environment for which
characteristics (properties) change over time. Сhanges to the environment is described by means
of a controlled dynamical system. Objects and their mathematical models are also changing
with the changing environment. In this situation, we consider the transfer an object from one
state (initial) to another one (terminal) for a finite period of time.

v∗0 ∈ Argmin{Φ0(v
∗
0, v0) + ϕ0(v0) | A0v0 ≤ a0}, (2)

v∗1 ∈ Argmin{Φ1(v
∗
1, v1) + ϕ1(v1) | A1v1 ≤ a1, (3)

d

dt
v(t) = D(t)v(t) +B(t)u(t), t0 ≤ t ≤ t1, (4)

v(t0) = v∗0, v(t1) = v∗1, u(t) ∈ U}.

Here sets Wi, i = 0, 1 from (1) are given in the form of functional inequalities as constraints.
Controls are taken from the ball of the Hilbert space U = {u(·) ∈ Lr

2[t0, t1] | ‖ u(·) ‖2Lr
2
≤ C2}

, D(t), B(t) -n × n, n × r are continuous time-dependent matrix functions, A0, A1 are fixed
matrices , a0, a1 are given vectors . If Φ0(v

∗
0, v0) ≡ 0,Φ1(v

∗
1, v1) ≡ 0, then (2),(3 ) is transformed

into a convex programming problem . These models (2)-(4) allow us to describe transfer an
object from one state to another one for a finite period of time.

Dynamical system (2)-(4) is considered in Hilbert space. It means that up to a set of measure
zero, values of the function-control u(·) belong to the set U ⊆ Lr

2[t0, t1]. In the case where the
control run through the entire set u(·) ∈ U, differential system (4) generate a trajectories
v(t), t ∈ [t0, t1], which are absolutely continuous functions. Left v(t0) = v0 and right v(t1) = v1
ends trajectories describe the set of initial and terminal conditions . In the linear case , these
sets are subspaces of Rn, which, in particular, may coincide with their spaces.

System (2)-(4) in the report, is treated as a convex-concave programming problem which is
formulated on the direct product of the spaces Rn×Ln

2 [t0, t1]×Lr
2[t0, t1]×Rn. In this situation
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it is naturally to introduce two linearized Lagrangian (primal and dual), which have the form
[1]

L(v∗0, v
∗
1, p0, p1, ψ(·); v0, v1, v(·), u(·)) = 〈∇2Φ0(v

∗
0, v

∗
0) +∇ϕ0(v

∗
0), v0〉

+〈p0, A0v0 − a0〉+ 〈∇2Φ1(v
∗
1, v

∗
1) +∇ϕ1(v

∗
1), v1〉+ 〈p1, A1v1 − a1〉

+
∫ t1

t0
〈ψ(t), D(t)v(t) +B(t)u(t)− d

dt
v(t)〉dt, (5)

and
LT (v∗0, v

∗
1, p0, p1, ψ(·); v0, v1, v(·), u(·)) =

〈∇2Φ0(v
∗
0, v

∗
0) +∇ϕ0(v

∗
0) + ATp0 + ψ0, v0〉+ 〈−a0, p0〉

+〈∇2Φ1(v
∗
1, v

∗
1) +∇ϕ1(v

∗
1) + ATp1 − ψ1, v1〉+ 〈−a1, p1〉

+
∫ t1

t0
〈DT (t)ψ(t) +

d

dt
ψ(t), v(t)〉+

∫ t1

t0
〈BT (t)ψ(t), u(t)〉dt (6)

for all p0, p1 ∈ Rm
+ , ψ(·) ∈ Ψn

2 [t0, t1], (v0, v1) ∈ Rn × Rn, (v(·), u(·)) ∈ ACn[t0, t1] × U , where
ACn[t0, t1] is the linear manifold of absolutely continuous functions from Ln

2 [t0, t1], Ψn
2 [t0, t1] is

the class of absolutely continuous functions from (Ln
2 [t0, t1])

T . The linear manifold ACn[t0, t1]
is dense everywhere in Ln

2 [t0, t1], i.a. the closure of ACn[t0, t1] in norm Ln
2 [t0, t1] coincides with

Ln
2 [t0, t1]. Here v∗0, v∗1 are parameters of the Lagrangians.
Both Lagrangians have the same saddle points (p∗0, p

∗
1, ψ

∗(·); v∗0, v∗1, v∗(·), u∗(·)). Components
of them form primal (v∗0, v

∗
1,v∗(·), u∗(·)) and dual (p∗0, p

∗
1, ψ

∗(·)) solutions for problem (2)-(4).
The report presents the saddle iterative method for calculating the saddle point for both

Lagrange functions. It is proved convergence of method to the saddle point for all components
of the primal and dual solutions of initial problem (optimal) control [1],[2]. More precisely, the
weak convergence is in respect controls, strong convergence is in the phase and dual trajectories,
as well as for terminal saddle variables for boundary value problems corresponding to the ends
of the time interval.
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