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We consider an optimal control problem of the form

dx

dt
= f(t, x, u), t ∈ T0 = [0, T ], (1)

∂ρ

∂t
+

⟨
∂ρ

∂x
, f(t, x, u)

⟩
= −ρ divx f(t, x, u), t ∈ (0, T ), x ∈ Ω, (2)

x(0) ∈ M0, (3)

ρ(0, x) = ρ0(x), x ∈ Ω, (4)

u(t) ∈ U, t ∈ T0, (5)

I(u) =
∫
T0

∫
Mt,u

F (t, x, ρ(t, x)) dxdt+
∫
MT,u

φ(x, ρ(T, x)) dx → inf . (6)

Here, x : T0 → Rn, ρ(t, x) : T0 × Ω → R1, u : T0 → Rr, Ω is a connected open subset of Rn,
the set M0 is compact in Rn, M0 ⊂ Ω, and �overline� stands for the closure of a set.

The standing assumptions are as follows:
1) U is a compact subset of Rr.
2) f(t, x, u) is continuous and continuously di�erentiable in all variables, and satis�es Lipschitz
and linear growth conditions with respect to x.
3) F (t, x, ρ), φ(x, ρ), and ρ0(x) are nonnegative, continuously di�erentiable functions.

By admissible controls we mean smooth functions u(·) with values in U , i.e., u(·) ∈
C1(T0,R

r), u(t) ∈ U , t ∈ T0. Given an admissible control function u(·), consider a bundle
∪x0∈M0x(·, x0;u) of solutions to equation (1), starting from the set M0. The set Mt,u is de�ned
as the section of the bundle at a given t, i.e.,

Mt, u = {xt = x(t, x0;u) : x(·, x0;u) is a solution to (1), (3) under control u(·), x0 ∈ M0}.

Problem (1)�(6) consists in optimal control of trajectory bundles considering the density of
distribution. Previously, in [2], modeling issues and analysis of dynamics of trajectory bundles
were addressed, and necessary conditions for optimality were given. Note that, in a number of
practical applications, controls are smooth. In this work, by using technique [1], we propose
necessary conditions for optimality in the class of smooth control functions.
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